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Abstract

We study the three-player prisoner’s dilemma game under the effect of
decoherence and correlated noise. It is seen that the quantum player is always
better off than the classical players. It is also seen that the game’s Nash
equilibrium does not change in the presence of correlated noise in contradiction
to the effect of decoherence in the multiplayer case. Furthermore, it is shown
that for maximum correlation the game does not behave as a noiseless game and
the quantum player is still better off for all values of the decoherence parameter
p which is not possible in the two-player case. In addition, the payoffs reduction
due to decoherence is controlled by the correlated noise throughout the course
of the game.

PACS numbers: 03.67.−a, 02.20.−a, 42.50.Lc

1. Introduction

Quantum entanglement provides a fundamental potential resource for communication and
information processing and is one of the key quantitative notions of the intriguing field of
quantum information theory and quantum computation. A quantum superposition state decays
into a classical, statistical mixture of states through a decoherence process which is caused
by entangling interactions between the system and its environment [1]. Superposition of
quantum states, however, are very fragile and easily destroyed by the decoherence processes.
Such uncontrollable influences cause noise in the communication or errors in the outcome of
a computation, and thus reduce the advantages of quantum information methods. However,
in a more realistic and practical situation, decoherence caused by an external environment is
inevitable. Therefore, the influence of an external environmental system on the entanglement
cannot be ignored. Novel research has been carried out to study the quantum communication
channels. Macchiavello and Palma [2] have developed the theory of quantum channels to
encompass memory effects. In real-world applications the assumption of having uncorrelated
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noise channels cannot be fully justified. However, quantum computing in the presence of noise
is possible with the use of decoherence free subspaces [3] and the quantum error correction
[4].

The application of mathematical physics to economics has seen a recent development in
the form of quantum game theory. Two-player quantum games have attracted a lot of interest
in recent years [5–7]. A number of authors have investigated the quantum prisoner’s dilemma
game [8–10]. A detailed description of quantum game theory can be found in [11–16]. There
have been remarkable advances in the experimental realization of quantum games such as
prisoner’s dilemma [17, 18]. The prisoner’s dilemma game is a widely known example in
classical game theory. The quantum version of the prisoner’s dilemma has been experimentally
demonstrated using a nuclear magnetic resonance (NMR) quantum computer [18]. Recently,
Prevedel et al have experimentally demonstrated the application of a measurement-based
protocol [19]. They realized a quantum version of the prisoner’s dilemma game based on the
entangled photonic cluster states. It was the first realization of a quantum game in the context
of one-way quantum computing. Studies concerning the quantum games in the presence of
decoherence and correlated noise have produced interesting results. Chen et al [20] have
shown that in the case of the two-player prisoner’s dilemma game, the Nash equilibria are not
changed by the effect of decoherence in a maximally entangled case. Nawaz and Toor [21]
have studied quantum games under the effect of correlated noise by taking a particular example
of the phase-damping channel. They have shown that the quantum player outperforms the
classical players for all values of the decoherence parameter p. They have also shown that for
maximum correlation the effects of decoherence diminish and it behaves as a noiseless game.
Recently, we have investigated different quantum games under different noise models and
found interesting results [22]. More recently, Gawron et al [23] have studied the noise effects
in the quantum magic squares game. They have shown that the probability of success can
be used to determine characteristics of quantum channels. The investigation of multiplayer
quantum games in a multi-qubit system could be of much interest and significance. In recent
years, quantum games with more than two players were investigated [24–27]. Such games
can exhibit certain forms of pure quantum equilibrium that have no analog in classical games,
or even in two-player quantum games. Recently, Cao et al [28] have investigated the effect
of quantum noise on a multiplayer prisoner’s dilemma quantum game. They have shown that
in a maximally entangled case a special Nash equilibrium appears for a specific range of the
quantum noise parameter (the decoherence parameter). However, no attention has yet been
given to the multiplayer quantum games under the effect of correlated noise, which is the main
focus of this paper.

In this paper, we investigate the three-player prisoner’s dilemma quantum game under
the effect of decoherence and correlated noise in a three-qubit system. We have considered
a dephasing channel parameterized by the memory factor μ which measures the degree of
correlations. By exploiting the initial state and measurement basis entanglement parameters,
γ ∈ [0, π/2] and δ ∈ [0, π/2], we study the role of the decoherence parameter p ∈ [0, 1]
and memory parameter μ ∈ [0, 1] on the three-player prisoner’s dilemma quantum game.
Here, δ = 0 means that the measurement basis are unentangled and δ = π/2 means that
it is maximally entangled. Similarly, γ = 0 means that the game is initially unentangled
and γ = π/2 means that it is maximally entangled. Whereas the lower and upper limits
of p correspond to a fully coherent and fully decohered system, respectively. Similarly, the
lower and upper limits of μ correspond to a memoryless and maximum memory (degree of
correlation) cases, respectively. It is seen that in contradiction to the two-player prisoner’s
dilemma quantum game, in the three-player game, the quantum player can outperform the
classical players for all values of the decoherence parameter p for the maximum degree of

2



J. Phys. A: Math. Theor. 41 (2008) 435302 M Ramzan and M K Khan

Table 1. The payoff matrix for the three-player prisoner’s dilemma game where the first number
in the parentheses denotes the payoff of Alice, the second number denotes the payoff of Bob and
the third number denotes the payoff of Charlie.

        Charlie   C       Charlie   D

                              Bob               Bob 
                       C                D                                  C               D 

D

C

(1,1,1)(4,0,4)

(0,4,4)(2,2,5)

(4,4,0)(5,2,2)

(2,5,2)(3,3,3)

D

C
AliceAlice

correlations (i.e. memory parameter μ = 1). In comparison to the two-player situation, the
three-player game does not become noiseless and the quantum player still remains superior
to the classical ones for an entire range of the decoherence parameter, p, in the memoryless
case, i.e. μ = 0. It is shown that the payoffs reduction due to decoherence is controlled by
the memory parameter μ throughout the course of the game. It is also shown that the Nash
equilibrium of the game does not change under the correlated noise in contradiction to the
case of decoherence effects as investigated by Cao et al [28].

2. Three-player prisoner’s dilemma game

Properties of the two-player quantum games have been discussed extensively [11–13, 29],
however, not much attention has been given to the multiplayer quantum games. Study of the
multiplayer games may exhibit interesting results in comparison to the two-player games. The
three-player prisoners’ dilemma is similar to the two-player situation except that Alice, Bob
and a third player, Charlie, join the game. The three players are arrested under the suspicion of
robbing a bank. Similar to the two-player case, they are interrogated in separate cells without
communicating with each other. The two possible moves for each prisoner are to cooperate
(C) or to defect (D). The payoff table for the three-player prisoner’s dilemma is shown in
table 1. The game is symmetric for the three players, and the strategy D dominates the strategy
C for all of them. Since the selfish players prefer to choose D as the optimal strategy, the
unique Nash equilibrium is (D,D,D) with payoffs (1, 1, 1). This is a Pareto inferior outcome,
since (C,C,C) with payoffs (3, 3, 3) would be better for all the three players. This situation
is the very catch of the dilemma and is similar to the two-player version of this game. The
dilemma of this game can be resolved in its quantum version. Du et al [25] investigated the
three-player quantum prisoner’s dilemma game with a certain strategic space. They found a
Nash equilibrium that can remove the dilemma in the classical game when the game’s state
is maximally entangled. This particular Nash equilibrium remains to be a Nash equilibrium
even for the non-maximally entangled cases. However, their calculations for the expected
payoffs of the players comprise product measurement basis for the arbiter of the game. Here
in our model we use the entangled measurement basis for the arbiter of the game to perform
measurement. In addition, we include the effect of decoherence and correlated noise in the
three-players settings.

3. Time-correlated dephasing channel

Quantum information is encoded in qubits during its transmission from one party to another
and requires a communication channel. In a realistic situation, the qubits have a nontrivial
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dynamics during transmission because of their interaction with the environment. Therefore,
Bob may receive a set of distorted qubits because of the disturbing action of the channel.
Studies on quantum channels have attracted a lot of attention in recent years [2, 30]. Early work
in this direction was devoted mainly to memoryless channels for which consecutive signal
transmissions through the channel are not correlated. In the correlated channels (channels
with the memory), the noise acts on consecutive uses of channels. We consider here the noise
model based on the time-correlated dephasing channel. In the operator sum representation,
the dephasing process can be expressed as [31]

ρf =
1∑

i=0

AiρinA
†
i , (1)

where

A0 =
√

1 − p

2
I

A1 =
√

p

2
σz

(2)

are the Kraus operators, I is the identity operator, σz is the Pauli matrix and p is the decoherence
parameter. Let N qubits are allowed to pass through such a channel then equation (1) becomes
[32]

ρf =
1∑

k1,,...,kn=0

(
Akn

⊗ · · · ⊗ Ak1

)
ρin

(
A

†
k1

⊗ · · · ⊗ A
†
kn

)
. (3)

Now if the noise is correlated with the memory of degree μ, then the action of the channel on
the two consecutive qubits is given by the Kraus operators [2]

Aij = √
pi[(1 − μ)pj + μδij ]σi ⊗ σj , (4)

where σi and σj are usual Pauli matrices with indices i and j run from 0 to 3 and μ is the
memory parameter. The above expression means that with the probability (1 −μ) the noise is
uncorrelated whereas with the probability μ the noise is correlated. Physically the parameter
μ is determined by the relaxation time of the channel when a qubit passes through it. In order
to remove correlations, one can wait until the channel has relaxed to its original state before
sending the next qubit. However, this may lower the rate of information transfer. The Kraus
operators for the three-qubit system can be written as [33]

Aijk = √
[(1 − μ)pi + μδij ][(1 − μ)pj + μδjk]pkσ

i ⊗ σ j ⊗ σ k, (5)

where i, j, k are 0 or 3. The memory parameter μ is contained in the probabilities Aijk , which
determines the probability of the errors σ i ⊗σ j ⊗σ k. Recalling that (1 −μ) is the probability
of independent errors on two consecutive qubits and μ is the probability of identical errors.
The sum of probabilities of all types of errors on the three qubits add to unity as we expect,∑

i,j,k

[(1 − μ)2AiAjAk + 2μ(1 − μ)AiAj + μ2Ai] = 1. (6)

It is necessary to consider the performance of the channel for arbitrary values of μ to reach
a compromise between various factors which determine the final rate of information transfer.
Thus in passing through the channel any two consecutive qubits undergo random independent
(uncorrelated) errors with the probability (1 − μ) and identical (correlated) errors with the
probability μ. This should be the case if the channel has a memory depending on its relaxation
time and if we stream the qubits through it.
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Figure 1. Schematic diagram of the model.

4. The model

In our model, Alice, Bob and Charlie, each uses individual channels to communicate with the
arbiter of the game. The two uses of the channel, i.e. the first passage (from the arbiter) and
the second passage (back to the arbiter) are correlated as depicted in figure 1. We consider
that the initial entangled state is prepared by the arbiter and passed on to the players through a
quantum correlated dephasing channel (QCDC). On receiving the quantum state, the players
apply their local operators (strategies) and return it back to the arbiter via QCDC. Then, the
arbiter performs the measurement and announces their payoffs. Let us consider that the three
players Alice, Bob and Charlie be given the following initial quantum state:

|ψin〉 = cos
γ

2
|000〉 + i sin

γ

2
|111〉, (7)

where 0 � γ � π/2 corresponds to the entanglement of the initial state. The players can
locally manipulate their individual qubits. The strategies of the players can be represented by
the unitary operator Ui of the form [22].

Ui = cos
θi

2
Ri + sin

θi

2
Pi, (8)

where i = 1, 2 or 3 and Ri, Pi are the unitary operators defined as

Ri |0〉 = eiαi |0〉, Ri |1〉 = e−iαi |1〉
Pi |0〉 = ei( π

2 −βi)|1〉, Pi |1〉 = ei( π
2 +βi)|0〉, (9)
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where 0 � θi � π , and −π � {αi, βi} � π. The application of the local operators of the
players transforms the initial state given in equation (7) to

ρf = (U1 ⊗ U2 ⊗ U3)ρin(U1 ⊗ U2 ⊗ U3)
†, (10)

where ρin = |ψin〉 〈ψin| is the density matrix for the quantum state. The operators used by the
arbiter to determine the payoffs for Alice, Bob and Charlie are

P k = $k
000P000 + $k

001P001 + $k
110P110 + $k

010P010

+ $k
101P101 + $k

011P011 + $k
100P100 + $k

111P111, (11)

where k = A,B or C and

P000 = |ψ000〉〈ψ000|, |ψ000〉 = cos
δ

2
|000〉 + i sin

δ

2
|111〉

P111 = |ψ111〉〈ψ111|, |ψ111〉 = cos
δ

2
|111〉 + i sin

δ

2
|000〉

P001 = |ψ001〉〈ψ001|, |ψ001〉 = cos
δ

2
|001〉 + i sin

δ

2
|110〉

P110 = |ψ110〉〈ψ110|, |ψ110〉 = cos
δ

2
|110〉 + i sin

δ

2
|001〉

P010 = |ψ010〉〈ψ010|, |ψ010〉 = cos
δ

2
|010〉 − i sin

δ

2
|101〉

P101 = |ψ101〉〈ψ101|, |ψ101〉 = cos
δ

2
|101〉 − i sin

δ

2
|010〉

P011 = |ψ011〉〈ψ011|, |ψ011〉 = cos
δ

2
|011〉 − i sin

δ

2
|100〉

P100 = |ψ100〉〈ψ100|, |ψ100〉 = cos
δ

2
|100〉 − i sin

δ

2
|011〉,

(12)

where 0 � δ � π/2 and $k
lmn are elements of the payoff matrix as given in table 1. Since

quantum mechanics is a fundamentally probabilistic theory, the strategic notion of the payoff
is the expected payoff. The players after their actions forward their qubits to the arbiter of the
game for the final projective measurement in the computational basis (see equation (12)). The
arbiter of the game finally determines their payoffs (see figure 1). The payoffs for the players
can be obtained as the mean values of the payoff operators as

$k(θi, αi, βi) = Tr(P kρf ), (13)

where Tr represents the trace of the matrix. Using equations (5)–(13), the payoffs for the three
players can be obtained as

$k(θi, αi, βi) = c1c2c3
[
η1$k

000 + η2$k
111 +

(
$k

000 − $k
111

)
μ(1)

p μ(2)
p ξ cos 2(α1 + α2 + α3)

]
+ s1s2s3

[
η2$k

000 + η1$k
111 − (

$k
000 − $k

111

)
μ(1)

p μ(2)
p ξ cos 2(β1 + β2 + β3)

]
+ c1c2s3

[
η1$k

001 + η2$k
110 +

(
$k

001 − $k
110

)
μ(1)

p μ(2)
p ξ cos 2(α1 + α2 − β3)

]
+ s1s2c3

[
η2$k

001 + η1$k
110 − (

$k
001 − $k

110

)
μ(1)

p μ(2)
p ξ cos 2(β1 + β2 − α3)

]
+ s1c2c3

[
η1$k

100 + η2$k
011 +

(
$k

100 − $k
011

)
μ(1)

p μ(2)
p ξ cos 2(α2 + α3 − β1)

]
+ c1s2s3

[
η2$k

100 + η1$k
011 − (

$k
100 − $k

011

)
μ(1)

p μ(2)
p ξ cos 2(β2 + β3 − α1)

]
+ s1c2s3

[
η1$k

101 + η2$k
010 +

(
$k

101 − $k
010

)
μ(1)

p μ(2)
p ξ cos 2(β1 + β3 − α2)

]
+ c1s2c3

[
η2$k

101 + η1$k
010 − (

$k
101 − $k

010

)
μ(1)

p μ(2)
p ξ cos 2(α1 + α3 − β2)

]
6
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Figure 2. Players payoffs as a function of the decoherence parameter p for the dephasing
channel are plotted for the quantum prisoner’s dilemma game, with memory parameter μ = 1
(solid lines), μ = 0 (dotted lines). $A(B) are payoffs of the classical players (Alice/Bob)
while $C represents the payoff of the quantum player (Charlie). The other parameters are
θ1 = θ2 = θ3 = π/2, β1 = β2 = α1 = α2 = 0, δ = γ = π/2, and α3 = π/2, β3 = π/2
are the optimal strategies of Charlie.

+
μ(1)

p

8
(cos2(δ/2) − sin2(δ/2))

[
$k

000 − $k
111

− $k
001 + $k

110 − $k
010 + $k

101 + $k
011 − $k

100

]
× sin(γ ) sin(θ1) sin(θ2) sin(θ3) cos(α1 + α2 + α3 − β1 − β2 − β3)

+
[[

$k
000 − $k

111

]
sin(δ) sin(θ1) sin(θ2) sin(θ2) cos(α1 + α2 + α3 − β1 − β2 − β3)

+
[
$k

110 − $k
001

]
sin(δ) sin(θ1) sin(θ2) sin(θ2) cos(α1 + α2 − α3 + β1 + β2 − β3)

+
[
$k

010 − $k
101

]
sin(δ) sin(θ1) sin(θ2) sin(θ2) cos(α1 − α2 + α3 + β1 − β2 + β3)

+
[
$k

100 − $k
011

]
sin(δ) sin(θ1) sin(θ2) sin(θ2) cos(α1 − α2 − α3 + β1

−β2 − β3)
][μ(2)

p

8
(cos2(γ /2) − sin2(γ /2))

]
, (14)

where

μ(j)
p = (1 − pj )

(
1 − 2pj + 4μjpj − 2μ2

jpj + p2
j − 2μjp

2
j + μ2

jp
2
j

)
η1 = cos2(γ /2) cos2(δ/2) + sin2(γ /2) sin2(δ/2)

η2 = sin2(γ /2) cos2(δ/2) + sin2(δ/2) cos2(γ /2)

ξ = 1

2
sin(δ) sin(γ ), ci = cos2 θi

2
, si = sin2 θi

2
,

(15)

where j = 1 or 2. The payoffs for the three players can be found by substituting the
appropriate values for $k

lmn into equation (14). The elements of the classical payoff matrix
for the prisoner’s dilemma game are given in table 1. The payoff matrix under decoherence
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Figure 3. Payoffs of the classical players (Alice/Bob) and the quantum player (Charlie) are
plotted as a function of memory parameter μ.a1 and a2 are payoffs of the classical players
for values of the decoherence parameter p = 0.7 and p = 0.3, respectively. c1 and c2 are
payoffs of quantum player for p = 0.7 and p = 0.3, respectively. The other parameters are
θ1 = θ2 = θ3 = π/2, β1 = β2 = α1 = α2 = 0, δ = γ = π/2, and α3 = π/2, β3 = π/2 are the
optimal strategies of Charlie.
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Figure 4. Alice’s payoff is plotted as a function of her strategies α1 and θ1 with θ2 = θ3 = π/2,

α2 = α3 = β1 = β2 = β3 = 0, δ = γ = π/2 and p = μ = 0.3.

can be obtained by setting μ = 0, i.e. by setting μ
(j)
p = (1 − pj )

3 in equation (15). It
is important to mention that for p and μ we mean p1 = p2 = p and μ1 = μ2 = μ
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Figure 5. Alice’s payoff is plotted as a function of her strategies α1 and θ1 with θ2 = θ3 = π/2,

α2 = α3 = β1 = β2 = β3 = 0, δ = γ = π/2 and p = μ = 0.7.

unless otherwise specified. Our results are consistent with [25, 27] and can be verified from
equation (14) when all the three players resort to their Nash equilibrium strategies. It can be
seen that the decoherence causes a reduction in the payoffs of the players in the memoryless
case (see equation (14)). We consider here that Alice and Bob are restricted to play classical
strategies, i.e., α1 = α2 = β1 = β2 = 0, whereas Charlie is allowed to play the quantum
strategies as well. It is shown that the quantum player outperforms the classical players for
all values of the decoherence parameter p for an entire range of the memory parameter μ.
Under these circumstances, it is seen that in contradiction to the two-player prisoner’s dilemma
quantum game, for maximum degree of correlations the effect of decoherence survives and it
does not behave as a noiseless game. It can be seen that the memory compensates the payoffs
reduction due to decoherence. Furthermore, it is shown that the memory has no effect on the
Nash equilibrium of the game. Alice’s best strategy (α1 = θ1 = π/2, and β1 = 0) remains
her best strategy throughout the course of the game. This implies that the correlated noise has
no effect on the Nash equilibrium of the game.

5. Results and discussions

To analyze the effects of correlated noise (memory) and decoherence on the dynamics of the
three-player prisoner’s dilemma quantum game. We consider the restricted game scenario
where Alice and Bob are allowed to play the classical strategies, i.e., α1 = α2 = β1 = β2 = 0,
whereas Charlie is allowed to play the quantum strategies. In figure 2, we have plotted the
player’s payoffs as a function of the decoherence parameter p for the dephasing channel. It is

9
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seen that the quantum player outscores the classical players for all values of the decoherence
parameter p for the memoryless (μ = 0) case. It is shown that even for a maximum degree
of memory, i.e. μ = 1, the quantum player can outperform the classical players, which
is in contradiction to the two-player prisoner’s dilemma quantum game. In addition, the
decoherence effects persist for maximum correlation and it does not behave as a noiseless
game, contrary to the two-player case. In figure 3, we have plotted payoffs of the classical
and the quantum players as a function of the memory parameter μ for p = 0.3 and 0.7,
respectively. It is seen that memory compensates the payoffs reduction due to decoherence.
In figures 4 and 5, we have plotted Alice’s payoff as a function of her strategies α1 and θ1

for p = μ = 0.3 and p = μ = 0.7, respectively. It can be seen that the memory has no
effect on the Nash equilibrium of the game. It is evident from figures 4 and 5 that the best
strategy for Alice is α1 = θ1 = π/2, and β1 = 0. It remains her best strategy for the full
range of the decoherence parameter p and the memory parameter μ, throughout the course
of the game. Therefore, it can be inferred that correlated noise has no effect on the Nash
equilibrium of the game. In comparison to the investigations of Cao et al [28], it is shown
that the new Nash equilibrium, appearing for a specific range of the decoherence parameter p,
disappears under the effect of correlated noise. As it can be seen that for the entire range of
the decoherence parameter p and the memory parameter μ, the Nash equilibrium of the game
does not change (see figures 4 and 5). Furthermore, it can also be seen that the payoffs of the
players are increased with the addition of the correlated noise as can be seen from figures 4
and 5, respectively, for the entire ranges of the decoherence and the memory parameters.

6. Conclusions

We present a quantization scheme for the three-player prisoner’s dilemma game under the effect
of decoherence and correlated noise. We study the effects of decoherence and correlated noise
on the game dynamics. We consider a restricted game situation, where Alice and Bob are
restricted to play the classical strategies, i.e., α1 = α2 = β1 = β2 = 0, however Charlie
is allowed to play the quantum strategies as well. It is shown that the quantum player is
always better off for all values of the decoherence parameter p for increasing values of the
memory parameter μ. It is seen that for the maximum degree of correlations, the effect of
decoherence does not vanish in comparison to the two-player prisoner’s dilemma quantum
game. The three-players game does not become noiseless game which is in contradiction to
the two-player case. It is also seen that for the maximum degree of memory, i.e. μ = 1, that
the quantum player can outscore the classical players for an entire range of the decoherence
parameter p. The payoffs reduction due to the decoherence is controlled by the memory
parameter throughout the course of the game. Furthermore, it is shown that the memory has
no effect on the Nash equilibrium of the game.
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